Monads, Indexes and Transformations
نویسندگان
چکیده
The speciication and derivation of substitution for the de Bruijn representation of-terms is used to illustrate programming with a function-sequence monad. The resulting program is improved by interactive program transformation methods into an eecient implementation that uses primitive machine arithmetic. These transformations illustrate new techniques that assist the discovery of the arithmetic structure of the solution.
منابع مشابه
Kleisli and Eilenberg-Moore Constructions as Parts of Biadjoint Situations
We consider monads over varying categories, and by defining the morphisms of Kleisli and of Eilenberg-Moore from a monad to another and the appropriate transformations (2-cells) between morphisms of Kleisli and between morphisms of Eilenberg-Moore, we obtain two 2-categories MndKl and MndEM. Then we prove that MndKl and MndEM are, respectively, 2-isomorphic to the conjugate of Kl and to the tra...
متن کاملLeibniz’s Monads and Mulla Sadra’s Hierarchy of Being: A Comparative Study
Mulla Sadra and Leibniz, the two philosophers from the East and the West, belong to two different worlds. Though they were unaware of the ideas of each other, their philosophical systems share certain common points that are comparable. Monads constitute the basis of Leibniz's thought and he refers to their features in his various works. On the other side, Mulla Sadra's philosophy is also based ...
متن کاملCategories and all that - A Tutorial
This is a short introduction to categories with some emphasis on coalgebras. We start from introducing basic notions (categories, functors, natural transformations), move to Kleisli tripels and monads, with a short discussion of monads in Haskell, and continue with displaying the interplay between algebras, adjunctions and monads. Coalgebras are discussed and applied to the semantics of modal l...
متن کاملMonads Defined by Involution - Preserving Adjunctions
Consider categories with involutions which fix objects, functors which preserve involution, and natural transformations. In this setting certain natural adjunctions become universal and, thereby, become constructible from abstract data. Although the formal theory of monads fails to apply and the Eilenberg-Moore category fails to fit, both are successfully adapted to this setting, which is a 2-c...
متن کاملDistributive Laws and Decidable Properties of SOS Specifications
Some formats of well-behaved operational specifications, correspond to natural transformations of certain types (for example, GSOS and coGSOS laws). These transformations have a common generalization: distributive laws of monads over comonads. We prove that this elegant theoretical generalization has limited practical benefits: it does not translate to any concrete rule format that would be com...
متن کامل